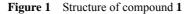
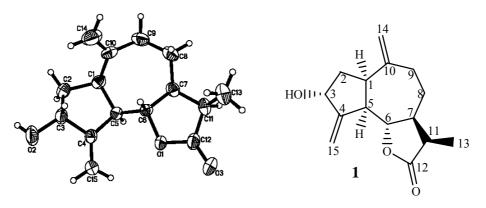
A New Guaianolide from Saussurea macrota


Min YANG, Zhong Jian JIA*


College of Chemistry and Chemical Engineering, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: A new guaianolide was isolated from *Saussurea macrota*. Its structure was elucidated by NMR spectroscopic and X-ray diffraction methods.

Keywords: Saussurea macrota, Compositae, sesquiterpene, guaianolide.

From the methanol extracts of *Saussurea macrota Franch*, a sesquiterpene **1** was afforded as colorless column crystals mp 122-124°C, $[\alpha]_{D}^{20}$ +31.0 (c 2.5, CHCl₃). The molecular formula was determined as $C_{15}H_{20}O_3$ by the molecular ion peak $[M]^+=248$ in the EIMS spectrum and the ¹³C NMR and DEPT data (**Table 1**). Its IR (KBr) spectrum showed bands at 3457 (OH), 1751 (γ -lactone ring) and 1637 (double bonds) cm⁻¹. In the ¹H NMR, one methyl group appeared at δ 1.15 (d, 3H, J=8.0Hz), two characteristic methylene signals appeared at δ 4.74 (s, 1H), δ 4.90 (s, 1H), δ 5.34 (s, 1H), δ 5.44 (s, 1H), and ¹³C NMR showed two oxygenated groups δ 85.1 (CH), δ 74.6 (CH), corresponding to the signals δ 3.98 (t, 1H, J=9.5Hz) and δ 4.67 (t, 1H, J=6.2Hz) in the ¹H NMR, indicating **1** possessed the guaianolide skeleton, just like those of known 3-hydroxygua-ia -4(15), 10(14)-diene-12, 6α -olides^{1,2}.

^{*} E-mail: jiazj@lzu.edu.cn

Min YANG et al.

Fortunately, the single crystal was obtained. Compound 1 was detected as 3α-hydroxy-11αH-guaia-4(15), 10(14)-dien-12, 6α-olide by X-ray diffraction analysis.

Table 1 $\,^{1}$ H NMR (400MHz), 13 C NMR (75MHz) and DEPT data of 1 (CDCl₃, TMS, δ , ppm)

Н	$\delta_{\rm H} (\alpha / \beta), J ({\rm Hz})$	С	δ_{C}	DEPT
1	3.05m	1	43.6	CH
2	1.87m / 2.15ddd (J=13.5, 6.2, 4.2)	2	39.5	CH_2
3	4.67dd (J=6.2, 6.2)	3	74.4	CH
		4	154.5	С
5	3.05m	5	49.6	CH
6	3.98dd (J=9.5, 9.5)	6	84.8	CH
7	1.90dddd(10.0, 9.5, 8.0, 4.2)	7	39.3	CH
8	2.42dddd / 1.35dddd (J=12.7, 4.0, 4.0, 4.2 / 12.7, 4.0, 10.0, 10.0)	8	28.8	CH_2
9	1.95ddd / 2.54ddd (J=12.8, 10.0, 4.0 / 12.8, 4.0, 4.0)	9	37.7	CH_2
		10	149.3	С
11	2.69dq (J=8.0, 8.0)	11	45.3	CH
		12	179.8	С
13	1.15d (J=8.0)	13	11.4	CH_3
14	4.74s / 4.90s	14	112.8	CH_2
15	5.34s / 5.44s	15	112.3	CH ₂

Acknowledgments

This work was supported by the NNSFC (No. 29972017).

References

- M. Ando, H. Kusaka, H. Ohara, *et al.*, *J. Org. Chem.*, **1989**, *54* (8), 1952.
 F. Bohlmann, Z. L. Chen, *Phytochemistry*, **1982**, *21* (8), 2120.

Received 31 March, 2003